Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50.392
1.
BMJ Open Respir Res ; 11(1)2024 May 03.
Article En | MEDLINE | ID: mdl-38702073

The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.


Anti-Bacterial Agents , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Pseudomonas Infections , Pseudomonas aeruginosa , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Cystic Fibrosis/drug therapy , Humans , Pseudomonas Infections/drug therapy , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Administration, Inhalation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Cystic Fibrosis Transmembrane Conductance Regulator/genetics
2.
Eur J Med Res ; 29(1): 286, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745338

BACKGROUND: Our study aimed to confirm a simplified radiological scoring system, derived from a modified Reiff score, to evaluate its relationship with clinical symptoms and predictive outcomes in Taiwanese patients with noncystic fibrosis bronchiectasis (NCFB). METHODS: This extensive multicenter retrospective study, performed in Taiwan, concentrated on patients diagnosed with NCFB verified through high-resolution computed tomography (HRCT) scans. We not only compared the clinical features of various types of bronchiectasis (cylindrical, varicose, and cystic). Furthermore, we established relationships between the severity of clinical factors, including symptom scores, pulmonary function, pseudomonas aeruginosa colonization, exacerbation and admission rates, and HRCT parameters using modified Reiff scores. RESULTS: Data from 2,753 patients were classified based on HRCT patterns (cylindrical, varicose, and cystic) and severity, assessed by modified Reiff scores (mild, moderate, and severe). With increasing HRCT severity, a significant correlation was found with decreased forced expiratory volume in the first second (FEV1) (p < 0.001), heightened clinical symptoms (p < 0.001), elevated pathogen colonization (pseudomonas aeruginosa) (p < 0.001), and an increased annual hospitalization rate (p < 0.001). In the following multivariate analysis, elderly age, pseudomonas aeruginosa pneumonia, and hospitalizations per year emerged as the only independent predictors of mortality. CONCLUSION: Based on our large cohort study, the simplified CT scoring system (Reiff score) can serve as a useful adjunct to clinical factors in predicting disease severity and prognosis among Taiwanese patients with NCFB.


Bronchiectasis , Severity of Illness Index , Humans , Male , Female , Bronchiectasis/physiopathology , Bronchiectasis/diagnostic imaging , Taiwan/epidemiology , Middle Aged , Prognosis , Aged , Retrospective Studies , Tomography, X-Ray Computed/methods , Forced Expiratory Volume , Adult , Pseudomonas aeruginosa/isolation & purification
3.
Pak J Pharm Sci ; 37(1(Special)): 191-197, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747269

synthesis of a pyrazole containing compound was achieved by reacting phenyl hydrazine with (E)-2-((4-bromophenyl) diazinyl)-1-phenylbutane-1,3-dione to produce 4-((4-bromophenyl) diazinyl)-5-methyl-1,3-diphenyl-pyrazole and characterization using mass spectrometer, 1H NMR and 13C NMR. The pharmacological evaluation of the synthesized compound, denoted as (KA5), against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 29213 and Clostridiums sporogeneses ATCC 19404, indicate that there is no promising antibacterial activity. However, KA5 shows a competitive anticancer activity (IC50: 8.5µM) upon its evaluation against hepatocellular carcinoma cell line (HepG 2) compared to sorafenib (IC50: 4.51µM). Moreover, human skin fibroblast (HSF) was used to investigate the effect of KA5 on normal cell lines, (IC50: 5.53µM). The presented biological evaluations resulted in better understanding of structure-activity relationship for 1, 3, 4-trisubstituted pyrazoles and revealed a great opportunity for more investigations for novel pyrazole-containing anticancer agents.


Anti-Bacterial Agents , Antineoplastic Agents , Pyrazoles , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Hep G2 Cells , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Sorafenib/pharmacology , Fibroblasts/drug effects , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Niacinamide/chemical synthesis , Niacinamide/chemistry , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects
4.
BMC Microbiol ; 24(1): 164, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745145

BACKGROUND: Multidrug-resistant (MDR) P. aeruginosa is a rising public health concern, challenging the treatment of such a ubiquitous pathogen with monotherapeutic anti-pseudomonal agents. Worryingly, its genome plasticity contributes to the emergence of P. aeruginosa expressing different resistant phenotypes and is now responsible for notable epidemics within hospital settings. Considering this, we aimed to evaluate the synergistic combination of fortimicin with other traditional anti-pseudomonal agents and to analyze the resistome of pan-drug resistant (PDR) isolate. METHODS: Standard methods were used for analyzing the antimicrobial susceptibility tests. The checkerboard technique was used for the in vitro assessment of fortimicin antibiotic combinations against 51 MDR P. aeruginosa and whole genome sequencing was used to determine the resistome of PDR isolate. RESULTS: Out of 51 MDR P. aeruginosa, the highest synergistic effect was recorded for a combination of fortimicin with ß-lactam group as meropenem, ceftazidime, and aztreonam at 71%, 59% and 43%, respectively. Of note, 56.8%, 39.2%, and 37.2% of the tested MDR isolates that had synergistic effects were also resistant to meropenem, ceftazidime, and aztreonam, respectively. The highest additive effects were recorded for combining fortimicin with amikacin (69%) and cefepime (44%) against MDR P. aeruginosa. Resistome analysis of the PDR isolate reflected its association with the antibiotic resistance phenotype. It ensured the presence of a wide variety of antibiotic-resistant genes (ß-lactamases, aminoglycosides modifying enzymes, and efflux pump), rendering the isolate resistant to all clinically relevant anti-pseudomonal agents. CONCLUSION: Fortimicin in combination with classical anti-pseudomonal agents had shown promising synergistic activity against MDR P. aeruginosa. Resistome profiling of PDR P. aeruginosa enhanced the rapid identification of antibiotic resistance genes that are likely linked to the appearance of this resistant phenotype and may pave the way to tackle antimicrobial resistance issues shortly.


Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Drug Synergism , Genome, Bacterial , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Whole Genome Sequencing , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Genome, Bacterial/genetics , Pseudomonas Infections/microbiology
5.
Vet Q ; 44(1): 1-9, 2024 Dec.
Article En | MEDLINE | ID: mdl-38726795

Antibiotic-resistant pathogens are a growing global issue, leading to untreatable infectious diseases in both humans and animals. Personalized bacteriophage (phage) therapy, the use of specific anti-bacterial viruses, is currently a leading approach to combat antibiotic-resistant infections. The implementation of phage therapy has primarily been focused on humans, almost neglecting the impact of such infections on the health and welfare of companion animals. Pets also have the potential to spread resistant infections to their owners or the veterinary staff through zoonotic transmission. Here, we showcase personalized phage-antibiotic treatment of a cat with a multidrug-resistant Pseudomonas aeruginosa implant-associated infection post-arthrodesis surgery. The treatment encompassed a tailored combination of an anti-P. aeruginosa phage and ceftazidime, precisely matched to the pathogen. The phage was topically applied to the surgical wound while the antibiotic was administered intramuscularly. After two treatment courses spanning 7 and 3 weeks, the surgical wound, which had previously remained open for five months, fully closed. To the best of our knowledge, this is the first case of personalized phage therapy application in felines, which provides further evidence of the effectiveness of this approach. The successful outcome paves the way for personalized phage-antibiotic treatments against persistent infections therapy in veterinary practice.


Anti-Bacterial Agents , Cat Diseases , Phage Therapy , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Cats , Phage Therapy/veterinary , Pseudomonas Infections/veterinary , Pseudomonas Infections/drug therapy , Pseudomonas Infections/therapy , Cat Diseases/therapy , Cat Diseases/drug therapy , Cat Diseases/microbiology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/therapeutic use , Ceftazidime/therapeutic use , Drug Resistance, Multiple, Bacterial , Bacteriophages
6.
Pathog Dis ; 822024 Feb 07.
Article En | MEDLINE | ID: mdl-38730561

Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.


Anti-Bacterial Agents , Biofilms , Plasma Gases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plasma Gases/pharmacology , Animals , Humans , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Drug Resistance, Bacterial , Drug Resistance, Microbial , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Disease Models, Animal , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy
7.
PeerJ ; 12: e16708, 2024.
Article En | MEDLINE | ID: mdl-38715984

The present work aimed at differentiating five Amaranthus species from Saudi Arabia according to their morphology and the ability in nanoparticle formulation. Biogenic silver nanoparticles (AgNPs) were synthesized from leaf extracts of the five Amaranthus species and characterized by different techniques. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of Amaranthus species. The nanoparticles (NPs) were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activity of the synthesized NPs was tested against Staphylococcus aureus, E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa using the agar well diffusion method. Spherical NPs varying in size and functional groups from the five plant species were demonstrated by TEM, DLS and FTIR analysis, respectively. Variations in NPs characteristics could be related to the phytochemical composition of each Amaranthus species since they play a significant role in the reduction process. EDX confirmed the presence of Ag in plant fabricated AgNPs. Antibacterial activity varied among the species, possibly related to the NPs characteristics. Varied characteristics for the obtained AgNPs may reflect variations in the phytochemical composition type and concentration among Amaranthus species used for their fabrication.


Amaranthus , Anti-Bacterial Agents , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Extracts , Silver , Amaranthus/chemistry , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Humans , Pseudomonas aeruginosa/drug effects , Plant Leaves/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Microscopy, Electron, Transmission , Saudi Arabia , Bacteria/drug effects , Klebsiella pneumoniae/drug effects
8.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Article En | MEDLINE | ID: mdl-38708178

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Anti-Bacterial Agents , Biofilms , Chitosan , Liposomes , Nanoparticles , Pseudomonas Infections , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Humans , Pseudomonas Infections/drug therapy , Nanoparticles/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Carriers/chemistry , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lipids/chemistry , Lipids/pharmacology , Quorum Sensing/drug effects , A549 Cells , Alginates/chemistry
9.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38713194

Whole-genome reconstruction of bacterial pathogens has become an important tool for tracking transmission and antimicrobial resistance gene spread, but highly accurate and complete assemblies have largely only historically been achievable using hybrid long- and short-read sequencing. We previously found the Oxford Nanopore Technologies (ONT) R10.4/kit12 flowcell/chemistry produced improved assemblies over the R9.4.1/kit10 combination, however long-read only assemblies contained more errors compared to Illumina-ONT hybrid assemblies. ONT have since released an R10.4.1/kit14 flowcell/chemistry upgrade and recommended the use of Bovine Serum Albumin (BSA) during library preparation, both of which reportedly increase accuracy and yield. They have also released updated basecallers trained using native bacterial DNA containing methylation sites intended to fix systematic basecalling errors, including common adenosine (A) to guanine (G) and cytosine (C) to thymine (T) substitutions. To evaluate these improvements, we successfully sequenced four bacterial reference strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, and nine genetically diverse E. coli bloodstream infection-associated isolates from different phylogroups and sequence types, both with and without BSA. These sequences were de novo assembled and compared against Illumina-corrected reference genomes. In this small evaluation of 13 isolates we found that nanopore long-read-only R10.4.1/kit 14 assemblies with updated basecallers trained using bacterial methylated DNA produce accurate assemblies with ≥40×depth, sufficient to be cost-effective compared with hybrid ONT/Illumina sequencing in our setting.


Genome, Bacterial , Nanopores , High-Throughput Nucleotide Sequencing/methods , Escherichia coli/genetics , Staphylococcus aureus/genetics , Sequence Analysis, DNA/methods , Pseudomonas aeruginosa/genetics , Nanopore Sequencing/methods , DNA, Bacterial/genetics , Klebsiella pneumoniae/genetics , Whole Genome Sequencing/methods , Bacteria/genetics , Bacteria/classification , Humans
10.
J Biosci ; 492024.
Article En | MEDLINE | ID: mdl-38726825

Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm-1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.


Anti-Bacterial Agents , Magnetosomes , Providencia , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Pseudomonas aeruginosa/drug effects , Magnetosomes/chemistry , Magnetosomes/metabolism , Providencia/chemistry , Providencia/drug effects , Spectroscopy, Fourier Transform Infrared , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Nanoparticles/chemistry , Microbial Sensitivity Tests , Staphylococcus/drug effects , Staphylococcus/growth & development , Particle Size , Iron/chemistry , Iron/metabolism , Magnetite Nanoparticles/chemistry
11.
Biomed Environ Sci ; 37(4): 387-398, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38727161

Objective: Recombinase-aided polymerase chain reaction (RAP) is a sensitive, single-tube, two-stage nucleic acid amplification method. This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Acinetobacter baumannii (AB) in the bloodstream based on recombinant human mannan-binding lectin protein (M1 protein)-conjugated magnetic bead (M1 bead) enrichment of pathogens combined with RAP. Methods: Recombinant plasmids were used to evaluate the assay sensitivity. Common blood influenza bacteria were used for the specific detection. Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR (M-RAP) and quantitative PCR (qPCR) assays. Kappa analysis was used to evaluate the consistency between the two assays. Results: The M-RAP method had sensitivity rates of 1, 10, and 1 copies/µL for the detection of SA, PA, and AB plasmids, respectively, without cross-reaction to other bacterial species. The M-RAP assay obtained results for < 10 CFU/mL pathogens in the blood within 4 h, with higher sensitivity than qPCR. M-RAP and qPCR for SA, PA, and AB yielded Kappa values of 0.839, 0.815, and 0.856, respectively ( P < 0.05). Conclusion: An M-RAP assay for SA, PA, and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.


Bacteremia , Mannose-Binding Lectin , Humans , Mannose-Binding Lectin/blood , Bacteremia/diagnosis , Bacteremia/microbiology , Bacteremia/blood , Recombinases/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/genetics , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Bacteria/genetics , Bacteria/isolation & purification
13.
Cochrane Database Syst Rev ; 5: CD009530, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700027

BACKGROUND: Early diagnosis and treatment of lower respiratory tract infections is the mainstay of management of lung disease in cystic fibrosis (CF). When sputum samples are unavailable, diagnosis relies mainly on cultures from oropharyngeal specimens; however, there are concerns about whether this approach is sensitive enough to identify lower respiratory organisms. Bronchoscopy and related procedures such as bronchoalveolar lavage (BAL) are invasive but allow the collection of lower respiratory specimens from non-sputum producers. Cultures of bronchoscopic specimens provide a higher yield of organisms compared to those from oropharyngeal specimens. Regular use of bronchoscopy and related procedures may increase the accuracy of diagnosis of lower respiratory tract infections and improve the selection of antimicrobials, which may lead to clinical benefits. This is an update of a previous review that was first published in 2013 and was updated in 2016 and in 2018. OBJECTIVES: To evaluate the use of bronchoscopy-guided (also known as bronchoscopy-directed) antimicrobial therapy in the management of lung infection in adults and children with cystic fibrosis. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched three registries of ongoing studies and the reference lists of relevant articles and reviews. The date of the most recent searches was 1 November 2023. SELECTION CRITERIA: We included randomised controlled studies involving people of any age with CF that compared the outcomes of antimicrobial therapies guided by the results of bronchoscopy (and related procedures) versus those guided by any other type of sampling (e.g. cultures from sputum, throat swab and cough swab). DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies, assessed their risk of bias and extracted data. We contacted study investigators for further information when required. We assessed the certainty of the evidence using the GRADE criteria. MAIN RESULTS: We included two studies in this updated review. One study enrolled 170 infants under six months of age who had been diagnosed with CF through newborn screening. Participants were followed until they were five years old, and data were available for 157 children. The study compared outcomes for pulmonary exacerbations following treatment directed by BAL versus standard treatment based on clinical features and oropharyngeal cultures. The second study enrolled 30 children with CF aged between five and 18 years and randomised participants to receive treatment based on microbiological results of BAL triggered by an increase in lung clearance index (LCI) of at least one unit above baseline or to receive standard treatment based on microbiological results of oropharyngeal samples collected when participants were symptomatic. We judged both studies to have a low risk of bias across most domains, although the risk of bias for allocation concealment and selective reporting was unclear in the smaller study. In the larger study, the statistical power to detect a significant difference in the prevalence of Pseudomonas aeruginosa was low because Pseudomonas aeruginosa isolation in BAL samples at five years of age in both groups were much lower than the expected rate that was used for the power calculation. We graded the certainty of evidence for the key outcomes as low, other than for high-resolution computed tomography scoring and cost-of-care analysis, which we graded as moderate certainty. Both studies reported similar outcomes, but meta-analysis was not possible due to different ways of measuring the outcomes and different indications for the use of BAL. Whether antimicrobial therapy is directed by the use of BAL or standard care may make little or no difference in lung function z scores after two years (n = 29) as measured by the change from baseline in LCI and forced expiratory volume in one second (FEV1) (low-certainty evidence). At five years, the larger study found little or no difference between groups in absolute FEV1 z score or forced vital capacity (FVC) (low-certainty evidence). BAL-directed therapy probably makes little or no difference to any measure of chest scores assessed by computed tomography (CT) scan at either two or five years (different measures used in the two studies; moderate-certainty evidence). BAL-directed therapy may make little or no difference in nutritional parameters or in the number of positive isolates of P aeruginosa per participant per year, but may lead to more hospitalisations per year (1 study, 157 participants; low-certainty evidence). There is probably no difference in average cost of care per participant (either for hospitalisations or total costs) at five years between BAL-directed therapy and standard care (1 study, 157 participants; moderate-certainty evidence). We found no difference in health-related quality of life between BAL-directed therapy and standard care at either two or five years, and the larger study found no difference in the number of isolates of Pseudomonas aeruginosa per child per year. The eradication rate following one or two courses of eradication treatment and the number of pulmonary exacerbations were comparable in the two groups. Mild adverse events, when reported, were generally well tolerated. The most common adverse event reported was transient worsening of cough after 29% of procedures. Significant clinical deterioration was documented during or within 24 hours of BAL in 4.8% of procedures. AUTHORS' CONCLUSIONS: This review, limited to two well-designed randomised controlled studies, shows no evidence to support the routine use of BAL for the diagnosis and management of pulmonary infection in preschool children with CF compared to the standard practice of providing treatment based on results of oropharyngeal culture and clinical symptoms. No evidence is available for adults.


Bronchoscopy , Cystic Fibrosis , Randomized Controlled Trials as Topic , Humans , Cystic Fibrosis/microbiology , Cystic Fibrosis/drug therapy , Child , Anti-Bacterial Agents/therapeutic use , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Adult , Bronchoalveolar Lavage , Adolescent , Child, Preschool , Pseudomonas aeruginosa/isolation & purification
14.
Sci Rep ; 14(1): 10224, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702368

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.


Anti-Bacterial Agents , Bacillus , Lactobacillus , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Silver/chemistry , Silver/pharmacology , Bacillus/metabolism , Lactobacillus/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
Sci Rep ; 14(1): 10200, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702397

Today, antibiotic therapies that previously worked well against certain bacteria due to their natural sensitivity, are becoming less effective. Honey has been proven to inhibit the biofilm formation of some respiratory bacteria, however few data are available on how the storage time affects the antibacterial effect. The activity of black locust, goldenrod, linden and sunflower honeys from three consecutive years (2020, 2021, 2022) was analyzed in 2022 against Gram-negative (Haemophilus influenzae, H. parainfluenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) bacteria using in vitro microbiological methods. After determining the physicochemical parameters of honey, broth microdilution was applied to determine the minimum inhibitory concentration of each honey type against each bacterium, and crystal violet assay was used to test their antibiofilm effect. The possible mechanism of action was explored with membrane degradation test, while structural changes were illustrated with scanning electron microscopy. Honeys stored for one or two years were darker than fresh honeys, while older honeys had significantly lower antibacterial activity. The most remarkable inhibitory effect was exerted by linden and sunflower honeys, and P. aeruginosa proved to be the most resistant bacterium. Based on our results, honey intended for medicinal purposes should be used as fresh as possible during a treatment.


Anti-Bacterial Agents , Honey , Microbial Sensitivity Tests , Honey/analysis , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Time Factors , Pseudomonas aeruginosa/drug effects , Food Storage/methods , Humans
16.
J Vis Exp ; (206)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38709077

Most in vitro models lack the capacity to fully probe bacterial phenotypes emerging from the complex interactions observed in real-life environments. This is particularly true in the context of hard-to-treat, chronic, and polymicrobial biofilm-based infections detected in the airways of individuals living with cystic fibrosis (CF), a multiorgan genetic disease. While multiple microbiome studies have defined the microbial compositions detected in the airway of people with CF (pwCF), no in vitro models thus far have fully integrated critical CF-relevant lung features. Therefore, a significant knowledge gap exists in the capacity to investigate the mechanisms driving the pathogenesis of mixed species CF lung infections. Here, we describe a recently developed four-species microbial community model, including Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica grown in CF-like conditions. Through the utilization of this system, clinically relevant phenotypes such as antimicrobial recalcitrance of several pathogens were observed and explored at the molecular level. The usefulness of this in vitro model resides in its standardized workflow that can facilitate the study of interspecies interactions in the context of chronic CF lung infections.


Biofilms , Cystic Fibrosis , Phenotype , Cystic Fibrosis/microbiology , Biofilms/growth & development , Humans , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Microbiota/physiology , Streptococcus sanguis/physiology , Prevotella melaninogenica/genetics
17.
Front Immunol ; 15: 1372349, 2024.
Article En | MEDLINE | ID: mdl-38698863

Pseudomonas aeruginosa (Pa) is an opportunistic bacterial pathogen responsible for severe hospital acquired infections in immunocompromised and elderly individuals. Emergence of increasingly drug resistant strains and the absence of a broad-spectrum prophylactic vaccine against both T3SA+ (type III secretion apparatus) and ExlA+/T3SA- Pa strains worsen the situation in a post-pandemic world. Thus, we formulated a candidate subunit vaccine (called ExlA/L-PaF/BECC/ME) against both Pa types. This bivalent vaccine was generated by combining the C-terminal active moiety of exolysin A (ExlA) produced by non-T3SA Pa strains with our T3SA-based vaccine platform, L-PaF, in an oil-in-water emulsion. The ExlA/L-PaF in ME (MedImmune emulsion) was then mixed with BECC438b, an engineered lipid A analogue and a TLR4 agonist. This formulation was administered intranasally (IN) to young and elderly mice to determine its potency across a diverse age-range. The elderly mice were used to mimic the infection seen in elderly humans, who are more susceptible to serious Pa disease compared to their young adult counterparts. After Pa infection, mice immunized with ExlA/L-PaF/BECC/ME displayed a T cell-mediated adaptive response while PBS-vaccinated mice experienced a rapid onset inflammatory response. Important genes and pathways were observed, which give rise to an anti-Pa immune response. Thus, this vaccine has the potential to protect aged individuals in our population from serious Pa infection.


Emulsions , Pseudomonas Infections , Pseudomonas Vaccines , Pseudomonas aeruginosa , Vaccines, Subunit , Animals , Pseudomonas aeruginosa/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Mice , Pseudomonas Infections/immunology , Pseudomonas Infections/prevention & control , Pseudomonas Vaccines/immunology , Pseudomonas Vaccines/administration & dosage , Female , Vaccine Development , Humans , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Disease Models, Animal , Bacterial Proteins/immunology , Bacterial Proteins/genetics
18.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Article En | MEDLINE | ID: mdl-38702622

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Biofilms , Catfishes , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Silver/chemistry , Silver/pharmacology , Animals , Humans , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Vero Cells , Fish Proteins/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Chlorocebus aethiops , Cell Line, Tumor , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Candida albicans/drug effects , Epidermis/metabolism
19.
BMC Microbiol ; 24(1): 152, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702660

BACKGROUND: Pseudomonas aeruginosa is a common cause of nosocomial infections. However, the emergence of multidrug-resistant strains has complicated the treatment of P. aeruginosa infections. While polymyxins have been the mainstay for treatment, there is a global increase in resistance to these antibiotics. Therefore, our study aimed to determine the prevalence and molecular details of colistin resistance in P. aeruginosa clinical isolates collected between June 2019 and May 2023, as well as the genetic linkage of colistin-resistant P. aeruginosa isolates. RESULTS: The resistance rate to colistin was 9% (n = 18) among P. aeruginosa isolates. All 18 colistin-resistant isolates were biofilm producers and carried genes associated with biofilm formation. Furthermore, the presence of genes encoding efflux pumps, TCSs, and outer membrane porin was observed in all colistin-resistant P. aeruginosa strains, while the mcr-1 gene was not detected. Amino acid substitutions were identified only in the PmrB protein of multidrug- and colistin-resistant strains. The expression levels of mexA, mexC, mexE, mexY, phoP, and pmrA genes in the 18 colistin-resistant P. aeruginosa strains were as follows: 88.8%, 94.4%, 11.1%, 83.3%, 83.3%, and 38.8%, respectively. Additionally, down-regulation of the oprD gene was observed in 44.4% of colistin-resistant P. aeruginosa strains. CONCLUSION: This study reports the emergence of colistin resistance with various mechanisms among P. aeruginosa strains in Ardabil hospitals. We recommend avoiding unnecessary use of colistin to prevent potential future increases in colistin resistance.


Anti-Bacterial Agents , Bacterial Proteins , Colistin , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Transcription Factors , Colistin/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Anti-Bacterial Agents/pharmacology , Humans , Bacterial Proteins/genetics , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Prevalence , Drug Resistance, Multiple, Bacterial/genetics , Biofilms/drug effects , Biofilms/growth & development , Hospitals , Drug Resistance, Bacterial/genetics , Cross Infection/microbiology , Cross Infection/epidemiology , Membrane Transport Proteins/genetics , Porins/genetics
20.
J Oleo Sci ; 73(5): 787-799, 2024.
Article En | MEDLINE | ID: mdl-38692900

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Anti-Bacterial Agents , Bacillus subtilis , Hemiterpenes , Molecular Docking Simulation , Oils, Volatile , Pentanoic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Bacillus subtilis/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , DNA Gyrase/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
...